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A perturbation procedure is used to obtain first- and second-order solutions for small- 
amplitude internal waves in a Lagrangian coordinate system. The first-order 
Lagrangian equations are formally accurate to the same order as the first-order 
Eulerian equations; however, they are different and the Lagrangian solution gives 
a more realistic wave shape. First-order Lagrangian solutions for internal waves in 
uniformly stratified fluid have a shape similar to that found in the second-order 
Eulerian solution. Wave profiles in uniformly stratified fluid exhibit broad crests and 
narrow troughs near the surface, a sinusoidal shape a t  mid-depth, and narrow crests 
and broad troughs near the bottom. The difference between the shape of crests and 
troughs grows as the wave amplitude is increased. Solutions obtained in a uniformly 
stratified fluid with a small bottom slope yield plausible shapes for breaking waves. 

1. Introduction 
Comparatively little effort has been made to model oceanographic phenomena in 

the Lagrangian coordinate system compared with that expended on Eulerian 
equations. This is perhaps understandable in view of the degree of nonlinearity of 
the complete Lagrangian equations of motion, compared with that of the Eulerian 
equations of motion (Pierson 1962). In particular, the pressure gradient force is 
nonlinear in Lagrangian coordinates, so when the flow is quasi-geostrophic the 
advantage obviously lies with the Eulerian formulation. Further, the Lagrangian 
form of the equation of continuity is nonlinear, and this equation generally is not 
regarded as one to be trifled with, although Pierson (1962) justifies the linearized form 
by referring to work done on surface gravity waves by Miche (1944). Other problems 
can arise with some types of boundary conditions where particles originally a t  the 
boundary are advected away from the boundaries. Such boundary conditions are 
often trivial in Eulerian coordinates but become complicated functions of space and 
time in Lagrangian coordinates. This results in a situation where it virtually becomes 
necessary to know the solution in order to specify the boundary conditions. However, 
for many situations (for example when there is no motion at  the boundaries) the 
Lagrangian form of the boundary conditions is as tractable as the corresponding 
Eulerian form. 

With so much running against the Lagrangian formulation one might well ask if 
it has any advantage at all. One advantage is that the total acceleration is linear in 
the Lagrangian formulation whereas it is decidedly nonlinear in the Eulerian 
formulation. This leads us to suspect that the Lagrangian formulation may be useful 
for describing phenomena which have a small enough scale so that the Eulerian field 
accelerations are important. This point will be clearly illustrated in the following work, 
where a first-order solution for internal waves will be found in Lagrangian 
coordinates. 
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The usefulness of the Lagrangian formulation has been previously illustrated by 
Pierson (1962) who found solutions that looked somewhat like turbulence, and by 
Okubo (1967) who used such solutions along with the Lagrangian diffusion equation 
in order to describe eddy diffusion. Both of these studies considered homogeneous 
fluids. The Lagrangian solution has also been applied with some success to surface 
waves (Miche 1944; Biesel 1952; Neumann & Pierson 1966). In particular, some 
features of the shape of surface waves are described just as well with the first-order 
solution of the Lagrangian equations as with the third-order solution of the Eulerian 
equations, Neumann & Pierson (1966). With this in mind Neumann & Pierson (1966) 
suggest that it might be advantageous to find a Lagrangian solution in order to 
describe the shape of internal waves. In particular, the shape of internal waves a t  
different depths in linearly stratified uniform-depth fluid will be treated. The shape 
of internal waves in two-layer and continuously stratified fluids has been studied 
previously by Thorpe (1968), Hunt (1961) and Orlanski (1972), among others, by 
considering up to third-order solutions in Eulerian coordinates. Olbers ( 1976) has used 
a Lagrangian approach to investigate nonlinear energy transfer between components 
of the internal wave spectrum. 

Realistic-looking Lagrangian solutions for surface gravity waves propagating up 
a slope have been found by Biesel(l952). This suggests that it might also be profitable 
to study breaking internal waves as they propagate in a uniformly stratified ocean 
of variable depth. 

The shape of internal waves is inherently Lagrangian since the fundamental 
variable is displacement of the isopycnals (not velocity). A similar observation led 
Okubo (1967) usefully to employ Lagrangian coordinates to study eddy diffusion. 

2. Formulating the problem in Lagrangian coordinates 

a nonhomogeneous fluid are given by 
The two-dimensional nonviscous form for the Lagrangian equations of motion in 

xt:t t”c+(Ztt+g)z,+- p c  - - 0. 
P 

Neumann & Pierson (1966), page 122, and Lamb (1932) show how these equations 
can be derived from the equivalent Eulerian equations by transforming the variables. 
The variables z and z are physically the particle coordinates. Pressure is represented 
by P and density by p. The dependent variables x, z ,  P are all functions of time and 
the initial particle coordinates (a, c). 

In  order to close the system we introduce the equation of mass conservation 

Assuming that the fluid is incompressible, 

then (3) reduces to (5 )  
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If the fluid is incompressible then ( 1 )  and (2) can be rearranged into the following 
form : 

by invoking (5 )  and by using (2) to eliminate ztt from (1) in order to obtain (6). 
Similarly (1)  can be employed to eliminate xtt from ( 2 )  in order to obtain (7). The 
equations are more physically understandable in this form. The horizontal and 
vertical components of the particle acceleration are given by xtt and ztt respectively. 
The pressure gradient force is nonlinear and takes the form of products of Lagrangian 
deformations and gradients in the pressure. Clearly if the Lagrangian displacements 
are very small then zc x x ,  x 1 and z, x xc x 0, in which case the equations assume 
a simple linear form. 

Equations (l), (2) and (5) are nonlinear and need to be linearized. Assume that x ,  
z, P can be expanded as a perturbation series about x = a, z = c ,  and P = Po: 

z =a+Exl+e2x2+ ..., (8 )  

z = c+sz1+s2z2+ ..., (9) 

P =  P0+sP,+2P2+ .... (10) 

Note that a slightly different expansion will be required if there is a mean shear (that 
is a shear that is not directly caused by the internal waves). The internal wave 
interaction with a mean vertical shear is currently under investigation. In the above 
expansions E is an ordering parameter which will be subsequently set equal to 1. It 
will also be convenient to consider the density as being composed of zeroth- and 
first-order components 

where both po and p1 are independent of time, being equal to the specified initial values 
which are functions of space. Pierson (1962) used a similar perturbation expansion 
for (8) ,  (9) and (10) for a homogeneous fluid. The assumption implicit in the 
perturbation expansion is that the Lagrangian deformations are small. This is 
equivalent to assuming that the wave amplitude is small compared to the vertical 
scale of the wave. The convergence of the series will be discussed later when first- 
and second-order solutions have been found. 

Substituting (8), (9), (lo), (11) into ( l ) ,  (2), (5) yields the following zeroth-order 
equations : 

P =Po+%, (11) 

Poa = 0, (12) 

POC+POS = 0 (13) 

and the zeroth-order equation of continuity is satisfied exactly. From (12) and (13) 
we see that po is a function of c alone, which is why the fist-order term is needed 
in (1 1 )  if we are to consider density to also be a function of a. Note that if density 
is a function of a then this will cause horizontal pressure gradients which will result 
in some mean motion. In the present formulation the only force available to act 
against a horizontal pressure gradient is that due to the inertial acceleration. Such 
a situation would be quite unrealistic for the ocean and so p1 is set equal to zero 
throughout the following work. However if Coriolis accelerations were included in the 
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formulation then it would be realistic to consider horizontal variations of the density 
field, as was done by Mooers (1975) in an Eulerian coordinate system. 

In the same fashion the first-order equations are 

(15) 

(16) 

P l C  - Zltt+gz,,+- - 0, 

Zla + ZIC = 0. 

Po 

Notice that the linearized continuity equation, (16), has a different form from its true 
nonlinear form ( 5 ) ;  hence the first-order solutions will not be expected to satisfy 
continuity exactly. On the other hand (4) is satisfied exactly by the first-order 
solutions whereas the Eulerian equivalent of (4) is pt +u,p+ wzp = 0, which is only 
approximately satisfied by the solution of the linearized Eulerian equations. For both 
the Lagrangian and Eulerian equations the order of the linearizing approximation 
is the same, although the approximation is different. 

It becomes clear that the first-order pressure terms of (14) and (15) are of a different 
form to those of the nonlinear (6) and (7). However the particle acceleration term 
of the first-order equations is of exactly the same form as in the nonlinearized 
equations. Thus the first-order Lagrangian equations retain field acceleration terms 
(which are of second order) at the expense of introducing second-order errors into 
the pressure gradient terms. The corresponding first-order Eulerian equations neglect 
field acceleration terms but preserve the form of the pressure gradient terms. 

Formally, therefore, the first-order Eulerian equations and the first-order 
Lagrangian equations are equally accurate. However the first-order Lagrangian 
equations are not the same as the first-order Eulerian equations since they represent 
different physical approximations to the unlinearized equations. Further, we note 
that the first-order Lagrangian equations have a nonlinear form when transformed 
into Eulerian coordinates. It seems likely, therefore, that when the solution to the 
first-order Lagrangian equations is transformed back into Eulerian coordinates a 
nonlinear-looking wave might result. With luck some of these nonlinear features 
might correspond to observed features that are caused by the field acceleration terms. 
However, meaningless nonlinear features might equally well result from the 
approximate treatment of the pressure gradient term. 

Eliminating the pressure from the first-order equations by cross-differentiation 
yields 

By the Boussinesq approximation the term pocxltt is generally 
neglected for internal waves found in the ocean (Groen 1948). 

Equation (16) permits the introduction of a stream function, 

2 - -$ e-iwt 
1 -  a 

x1 = $c e-’wt, 

which upon substitution into (17) yields 

(17) 

small enough to be 

$(a, c), such that 

(18) 

(19) 

where N = ( -gpoc/po)f is the Brunt-Vaisala frequency which will be taken to be a 
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constant throughout the following work. The concept of the stream function $(u, c) 
in Lagrangian coordinates is essentially the same as in Eulerian coordinates, in that 
lines of constant + represent a curve whose tangent is everywhere parallel fo the local 
instantaneous particle displacement. We note however that a stream function cannot 
be defined for the complete nonlinear problem, see (l), (2) and (5 ) ,  whereas a stream 
function can be defined for the equivalent nonlinear problem expressed in Eulerian 
coordinates. 

3. Solutions for a flat bottom 
If the fluid is considered to have a uniform depth h, then the boundary conditions 

are imposed. Equation (21) states that the surface is a rigid lid. Phillips (1966, $5.2) 
shows that this approximation is usually valid. Equation (22) states that the 
ocean’s bottom is also a streamline, so that there is no motion across the bottom. 
Equations (21) and (22) together imply no mean horizontal flow. 

The problem is observed to have exactly the same mathematical form as the 
equivalent Eulerian formulation, and therefore has a solution, for progressive waves, 
of the form 

where 

$(a, c) = i - A sin (nr> - exp (ik, a), 
kn 

n7cA 
k, = - 

h ’  
n = 1,2,3, ... 

In  the above expressions A is the vertical amplitude coefficient (units m) and the 
horizontal wavenumber for the nth mode is given by k, (units m-l). To first order 
the particle displacements are given by 

z = a - 4  A cosrf) sin (k,a-wt),  

z = c + A  sin - cos(k,a-wt), (3 
which are of a similar form to expressions for the velocity found from the first-order 
Eulerian equations. The variables are not, however, the same as for the Eulerian 
solution, reflecting the different physical approximation to the complete nonlinear 
equations. In order to observe the shape of the wave we plot the isopycnals for a 
chosen depth c (the depth of an isopycnal without internal waves) and time t by 
plotting x against z aa a is varied parametrically. This is valid because the density 
of particles is not a function of time. The same technique has previously been 
employed by Neumann & Pierson (1966) and Biesel(1952Xin order to plot the shape 
of surface gravity waves. Note that the solution given by (26) and (27) also defines 
the transformation between Lagrangian and Eulerian coordinates. The transformation 
will be accurate to the same order as the solution. It is possible to manipulate (26) 
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FIGURE 1. (a) The shape of the first-order solution for the first-mode internal wave at depths of 
10,25,50,75,100, 125, 150,175, and 190 m. The wavelength is 916.5 m, the water depth is 200 m, 
and the vertical amplitude A is 13.7 m. The ratio of the vertical to horizontal scale is 10 to 1. 
(a) The shape of a wave with the same parameters as in figure 1 (a) but with a larger amplitude 
A = 41.1 m. The ratio of the vertical to horizontal scale is 10 to 1. 

and (27) to obtain an expression for x as a function of (z ,  c ,  t )  but not, unfortunately, 
to obtain z as a function of (2, c ,  t ) .  This is why a parametric approach has been used 
to plot wave shapes. 

Plots of wave shape for the first mode, are shown in figures 1 (a) and 1 (b) for two 
different amplitudes and various depths. Waves in both of these plots have a 
sufficiently large Richardson number t o  be considered stable. Clearly the shape of the 
waves is now a function of both wave depth and amplitude. The waves have a 
marked nonsinusoidal shape even though x and z are sinusoidal functions of a and c. 
Clearly, this is caused by the transformation between Eulerian and Lagrangian 
coordinates (as expressed to first order by (26) and (27)) being nonlinear. Near the 
surface wave peaks are broad and wave troughs are narrow. At mid-depth the troughs 
and crests have the same shape. Near the bottom the wave troughs are broad and 
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the wave crests are peaked. As the amplitude of the waves becomes greater we observe 
that the waves become increasingly peaky . 

The particle trajectory can be found (to first order) by eliminating a from 
expressions for x and z. The resulting expression is the equation for an ellipse : 

2 
= A2. 

Ax, 2 

For the first mode the ellipse has ellipticity A at mid-depth and flattens to straight 
horizontal lines at the surface and bottom. 

Let us now compare the wave shape given by the first-order Lagrangian solution 
with that given by the first- and second-order Eulerian solutions of Thorpe (1968). 
These three wave shapes are compared in figure 2. Clearly the first-order Lagrangian 
solution is superior to the first-order Eulerian solution for describing the shape of the 
internal wave. 

Even more realistic wave shapes might be anticipated if the problem is solved to 
second order. The second-order perturbation equations are 

p2u 

p2c - 

Z2tt + v 2 a  +- = - 5 1 t t  % z  - Z l t t  Z lU,  

Z z t t + S z , c + -  - - ~ l t t ~ l C - ~ l t t ~ l C ~  

Po 

PO 

Substituting expressions for the first-order terms into the right-hand side of the above 
equations and using the method of undetermined coefficients it is fairly straightforward 
to find the following solutions for the second-order terms: 

- ikn A2 ei2(k, a-wt) 
2A2 

x2 = 

z2 = 0, (33) 

These second-order corrections have the effect of making the sides of the waves 
steeper while also making the troughs and crests broader, as is shown in figure 3, which 
is the second-order solution for the same wave plotted in figure 1 (b). The second-order 
solution compares very favourably with wave shapes measured in the ocean (LaFond 
1962). The second-order Lagrangian solution is compared with the second-order 
Eulerian solution in figure 4. Again the Lagrangian solution has a broader trough 
and rises more steeply than the Eulerian solution. 

The first- and second-order stream functions are identical in Eulerian coordinates 
and the first-order Lagrangian solution for the stream function is different, as shown 
in figure 5. We expect the second-order Eulerian solution for the stream function to 
be more accurate than the first-order Lagrangian solution. Therefore, it would appear 
that the velocity field is best described using Eulerian equations. Shear instability 
criteria are therefore best found from Eulerian solutions. The first-order Lagrangian 
solution predicts that gravitational instability, resultingfrom particle speeds becoming 
greater than the phase speed, will occur only for waves with such large amplitudes 
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FIQURE 2. A comparison of the wave shape for first- and second-order Eulerian solutions (-) with 
that for the first-order Lagrangian solution (---). The wavelength is 916.5 m, the water depth is 
200 m, the depth of the isopycnal plotted is 175 m, and the vertical amplitude coefficient A is 27.4 m. 
The ratio of vertical to horizontal scales is 10 to 1. 

FIQURE 3. The corrections added. 

that they would break the surface. For the present solution this type of instability 
is obviously unimportant (as it also is for the Eulerian case). Gravitational instability 
could, however, occur if the internal wave interacted with a mean vertical shear. 

For the perturbation procedure to be valid i t  is necessary for higher-order terms 
in the series solution to become smaller. The second-order terms are smaller than the 
first-order terms by a factor of nnA/2h, which gives us some confidence that the series 
converges for waves that have a small vertical amplitude A compared with the 
vertical scale of the wave, hln. 



A Lagrangian solution for internal waves 199 

200 400 600 800 
x (m) 

FIQURE 4. A comparison of the second-order Eulerian wave shape (-) with the second-order 
Lagrangian wave shape (---). The parameters are the same aa for the wave in figure 2. 

FIGURE 5. A comparison of first- and second-order Eulerian streamlines (-) with first-order 
Lagrangian streamlines (---) for a wave with the same characteristics aa that plotted in figure 2. 
The first- and second-order streamlines are identical in Eulerian coordinates. The ratio of the 
vertical scale to horizontal scale is 4.6 to 1. 

4. Solutions for other depth profiles 
If the bottom of the ocean has a uniform slope s then to first order the problem 

is defined by (20), (21) and 

where to first order we can write 

if the bottom slope is small, s = O(e). These equations have the same form as those 
of the corresponding Eulerian problem which was treated by Manton (1970), Manton 

$(a, -4 = 0, (35) 

h = sa+h,, (36) 
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FIQURE 6. The evolving shape of an internal wave at 200 s intervals aa it propagates up a uniformly 
sloping sea bed. Parameters are 8 = 0.2, N = 0.005 rad/s, w = 0.002 rad/s, A’ = 40, and the 
unperturbed depths of the isopycnals shown are 5, 10, and 15 rn. 

& Mysak (1971), and Wunsch (1968, 1969). From this work we see that a solution 
for a uniformly sloping bottom is 

+(u,c) = A’exp i2nnRln u+-+- -A’exp i2nnRln u--+- , (37) [ ( ; 31 [ ( ; 31 
where 

1 
R =  

l n [ s ] ’  

and n = 1 ,2 ,3 . .  . . The shape of these waves can be found by plotting x and z (for 
given depths c and times t )  as parametric functions of a. Figure 6 shows the shape 
of a progressive wave at  200s intervals as it runs up the sloping bottom. The 
isopycnals, at depths of 5, 10, and 15 m for the unperturbed fluid, are plotted. 
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T 

FIQURE 7. Detail of the changing shape of the 15 m isopycnal at 400 s intervals 
aa the internal wave plotted in figure 6 propagates up a slope. 

Clearly, near the surface the wave breaks downwards whereas at depth i t  breaks 
upwards. The bottom of the wave breaks closer to shore than the top of the wave. 
The wave steepens as time progresses, becomes very asymmetric and even becomes 
double-valued. The wave is somewhat unrealistic since i t  goes beneath the bottom 
(a consequence of continuity not being satisfied exactly). Nevertheless the solution 
certainly has a plausible shape, for a first approximation. More realistic shapes near 
breaking would probably require the addition of frictional forces since there are strong 
shears a t  this point. Friction might be expected to reduce the amplitude of the waves 
as they break, thereby avoiding the situation shown in the last plot of figure 6, where 
a wave trough is breaking through the sea floor. The evolution of the wave at 15 m 
depth is shown at 400 s time steps in figure 7. Clearly the wave becomes double- 
valued and therefore gravitationally unstable, so that if kinetic energy was lost to 
friction then mixing would occur. 

5. Conclusions 
The present work illustrates how some features of internal waves can be described 

more easily in Lagrangian than in Eulerian coordinate systems. In  particular the 
shape of internal waves, propagating in an ocean of uniform stratification and 
constant depth, shows the observed broadening of the crests/troughs near the 
surface/bottom as well as the generally observed steep sides of the wave (compared 
with the sinusoidal shape). The solution for a wave propagating up a small slope 
appears to yield a fairly realistic shape for the initial stages of wave breaking. A 
variety of solutions for other bottom profiles could be obtained easily by using 
existing solutions for the Eulerian formulation, such as those of Manton (1970). 

Throughout the above work we see that the form of the first-order equations is 
similar in both Eulerian and Lagrangian coordinate systems. It appears possible that 
other problems that use linearized Eulerian equations could be profitably examined 
in a similar fashion. 
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